1 Introduction

Anasphere’s vibrating-wire sonde records a vibrating wire’s natural frequency as ice collects
along its length. These frequency measurements, combined with colocated meteorological
measurements, can be used to determine the supercooled liquid water content (SLWC) in the
surrounding air. The following is a derivation of the equations used to calculate SLWC using
the sonde’s measurements. It is highly recommended that the data be smoothed before using
with these equations.

2 The Wire

The system used consists of an exposed vibrating section of steel wire that accumulates ice.
The wire vibrates perpendicularly to the direction of airflow. Due to boundary effects, only
the forward portion of the wire collects ice. The model used for this system is shown in Figure
1. Here, the ice’s height is expressed as the value a times the diameter of the wire, D.
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Figure 1: The wire loaded with ice

The wire’s displacement equation is assumed to be

y = B cos(wt) [Cos <;Z> - 1] : (1)

where B is an unspecified amplitude. Here, w = 2w f and f is the wire’s vibration frequency.

3 Frequency

Using the calculations shown in appendix A, we can find an equation for the frequency of
the wire by equating the maximum potential and kinetic energies of the wire. The potential
energy is given by
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where 8 = E,,/E;. The kinetic energy of the wire is given by
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Here, the subscripts w and ¢ indicate the wire and ice, respectively. E, I, and \ are the Young’s
modulus, the area moment of inertia, and linear density of the materials, respectively.
The maximum potential and kinetic energies are then

7T4B2 CIZ‘
PEpax = | —— | EwLo ( In + —- |, 6
(ML%) o (1+5) ©)
1
KEpax = §w2B2L0(a)\w +bA;). (7)

Equating these, multiplying both sides by w?, and rearranging yields
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This method of finding the wire’s frequency is known as the Rayleigh method. Using this

with 6 and 7 and recalling that w = 27 f, yields
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4 SLWC

To find an equation for SLWC, the system is modeled as a wire sweeping through a volume
of air V' and collecting a percentage e of the SLW contained in that volume as ice mass M;:
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Since the wire only collects ice on the end region, V= D(Ly — L1)vAt, where v is the speed
of the wire and ¢ is time. Equation 10 becomes
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where ); is the time derivative. The percentage collected, or collection efficiency, is calculated
using the method of Lozowski et al. (1983). The details of this method can be found in



appendix B. Using the results from appendix C, specifically Equation 42, our final equation
for SLWC is
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5 Idealized SLWC

Equation 12 assumes that the stiffness of the ice has a significant effect on the frequency of
the wire. If, instead, the ice’s stiffness is considered to be negligible, then Equation 12 can
be reduced to an idealized form. This is done by rearranging it and taking its limit as
approaches oo,
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Appendices

A Energy Integrals

The wire’s displacement equation:

y = B cos(wt) [cos <27TLZ> - 1] .

A.1 Derivatives

A.2 Integrals

J = —wB sin(wt) [cog (22) _ 1]

7? = w?B%sin? (wt) [cos2 (;;()) — 2cos (;;i)) + 1]
B (wh) si T
=—|—= in{_—
Ya 2Ly ) ORI o,

B (wt) YW
= — | ——= ) cos(wtl)cos | ——
Y AL 2Lo

42
m™B T
yix = < 16Lé) COS2 (wt) COS2 <2Lo>

A.2.1 Time-Derivative Integrals
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A.2.2 X-Derivative Integrals
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A.2.3 Integral Result Summary
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B Collection Efficiency

The collection efficiency is calculated using the method of Lozowski et al:
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Here, Ky is the modified Langmuir inertia parameter, K is Langmuir inertia parameter, Re
is the Reynolds number, pyater is the density of water, v is the air velocity, d is the SLW
droplet diameter, p, is the air density, u, is the air viscosity and D is the wire diameter. In
practice, € is essentially zero for Ky < 0.125.

The air viscosity is calculated using Sutherland’s Law:
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where T is the air temperature, T is a reference temperature, pg is the viscosity at Tp, and



S is Sutherland’s temperature for air. Some convenient values are

Ty = 273.15K,
K
o = 1.716 x 107° ~8_
ms
S =110.4K.

C Time-Derivative of Ice Linear Mass Density

In order to find }\i, we have to write I; in Equation 9 in terms of \;. The ice’s area moment
of inertia is given by
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We can eliminate « by writing it in terms of A;, assuming an idealized ice accretion shape:
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where A; is the cross sectional area of the ice and p; is ice density. Using this we get
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We can also use the wire’s natural frequency, fy, which is defined as
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After rearranging,
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Equation 9 then becomes
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We can now find \;:
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The derivative is then:
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Substituting the value for § back in, we get
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