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Introduction 
 
Anasphere’s vibrating-wire sonde records a vibrating wire’s frequency as ice collects along its length. 
These frequency measurements, combined with collocated meteorological measurements, can be used to 
determine the supercooled liquidwater content (SLWC) in the surrounding air. The following is a 
derivation of the equations used to calculate SLWC, for the gel-coated and nickel-plated wires, using the 
sonde’s measurements.  
 
Equation Derivation for Nickel Plated and Gel-Coated Wires 
 
The sonde measures the frequency of the wire.  This frequency is used to calculate the water collected by 
the wire, in the form of ice or absorbed liquid, by calculating the change in mass of the wire.  Therefore, 
the actual frequency is not so important as is the change in frequency, Δf, which intern yields the change 
in mass, ΔM. 
 
The gel-coated and Ni-plated wires differ from the usual, plain wire versions, in that there is a step in the 
solid structure of the geometry (Figure 1).  This step is accounted for, by adding another term to the 
equations of motion, and integrating.   

	
Figure	1:	Plated	or	Coated	Wire 

 
The Rayleigh method is used to calculate the system frequency, by relating the potential and kinetic 
energies: 
 

𝜔" =
𝜔"𝑃𝐸&'(
𝐾𝐸&'(

	. 
(1) 

 
The displacement equation for the wire is assumed to be 
 

𝑦 = 𝐵 cos(𝜔𝑡) cos
𝜋𝑥
2𝐿8

− 1 	, (2) 

 
where B is an un-specified amplitude and, recalling ω=2πf, f is the wire’s vibration frequency. 
 
The potential energy of the wire then, incorporating (2), is given by 
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=
𝜋F𝐵"

64𝐿8F
𝐸<𝐼<𝐿8 cos" 𝜔𝑡 + 𝐸BC𝐼BC𝑐𝐿8 cos" 𝜔𝑡 + 𝐸E𝐼E𝑐𝐿8 cos" 𝜔𝑡 , 

 

=
𝜋F𝐵"

64𝐿8F
𝐿8 cos" 𝜔𝑡 𝐸<𝐼< + 𝐸BC𝐼BC𝑐 + 𝐸E𝐼E𝑐 , 

 

(3) 

 
where yxx is the second derivative of y with respect to x, E is the Young’s modulus, and I is the area-
moment of inertia.  Here, the w subscript indicates the wire, the Cr subscript indicates the ceramic 
substrate, and the g subscript indicates the gel. Also, nickel and ice are represented by Ni, and i 
subscripts, respectively.   
 
The area-moments of inertia are 
 

𝐼< =
𝜋
64
𝐷<F	, (4) 

 
𝐼BC =

𝜋
64

𝐷BCF − 𝐷<F , 
 

𝐼E =
𝜋
64

𝐷EF − 𝐷<F , 
 

𝐼KL =
𝜋
64

𝐷KLF − 𝐷<F , 
 

(5) 

 
where DCr = Dg = DNi = DCoating (see Figure 1).  Because the ceramic substrate absorbs the gel, the 
diameter terms, Dceramic and Dgel, are assumed to be nominally equal.  For ice, 
 

𝐼L =
𝜋
12
𝛼𝐷<F	. (6) 

 
The kinetic energy of the wire is 
 

𝐾𝐸 =
λ<
2

𝑦"𝑑𝑥 +
λBC
2

𝑦"𝑑𝑥 +
λE
2
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@A

@D

@A

@D

@A

8
	, 

 

=
1
2
𝜔"𝐵"𝐿8 sin" 𝜔𝑡 𝑎λ< + 𝑏λBC + 𝑏λE 	, 

(7) 

 
where λw, λCr, and λg are the linear densities of the wire, ceramic substrate and gel, respectively.  The 
constants a, b and c are given by 
 

𝑎 =
3𝜋 − 8
2𝜋

 
 

(8) 
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𝑏 = 𝑎 −
3𝐿U
2𝐿8

−
1
2𝜋
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𝜋𝐿U
2𝐿8
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𝜋
sin

𝜋𝐿U
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𝑐 = 1 −
𝐿U
𝐿8
−
1
𝜋
sin

𝜋𝐿U
𝐿8

	. 

 
Setting the sine and cosine terms in (3) and (7) to one, substituting them into (1), along with the relation 
ω=2πf, yields 
	

𝑓" =
𝜋" 𝐸<𝐼< + 𝐸BC𝐼BC𝑐W + 𝐸E𝐼E𝑐W
128𝐿8F 𝑎W𝜆< + 𝑏W𝜆BC + 𝑏W𝜆E

	, 
(9) 

 
where f is frequency.  This equation can be rearranged to find the unknown linear density, which in this 
case, is for the gel, λg: 
	

λE =

𝜋" 𝐸<𝐼< + 𝐸BC𝐼BC𝑐
128𝑓"𝐿8

F − 𝑎𝜆< − 𝑏𝜆BC

𝑏
	. 

 

(10) 

 
The change in mass, ΔMi, is found by multiplying the change in linear density, from t0 to t1, by the length 
of the wire, L0 (i.e. from f0 to f1 in (10)): 
	

∆𝑀E = 𝐿8 λEU − λE8 , 
 

(11) 

where t0 is the beginning, or pre-measurement time, and t1 is the time at some point of interest in the 
sample data.  As such, the frequency at t0 would be the beginning pre-measurement, or base frequency, f0, 
and at t1, would be the frequency at some point of interest in the sample data, f1, etc... 
 
The same method applies to the nickel-plated wire.  ΔMi, is calculated by replacing all ceramic substrate 
terms with the corresponding terms for the nickel, and replacing all gel terms with the corresponding 
terms for the ice.  These substitutions must be made throughout, but as one example, (11) becomes 
	

∆𝑀L = 𝐿8 λLU − λL8 , 
 
where ΔMi is the change in mass of the ice, and λi0 and λi1 are the linear mass densities at f0 and 
f1, respectively. 
 

(12) 

The supercooled liquid water content (SLWC) can then be calculated by substituting the result of (11) or 
(12) into the equation 
 

𝑆𝐿𝑊𝐶 =
∆𝑀E
𝜖𝑉

=
∆𝑀E

𝜖𝐷<𝐿L𝑣∆𝑡
	. 

(13) 

 
This is based on the model used in Hill (1994).  An equation for SLWC is found by starting with the basic 
equation for a length of wire sweeping through a volume V of air, with speed v, and collecting a 
percentage (collection efficiency) ε of the SLW, contained in that volume, as ice on its forward edge, over 
time, t.   
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The collection efficiency of the wire is calculated using the method of Lozowski et al. (1983): 
 (14) 

𝜖 =
0.489 logU8 8𝐾8 U.efg 0.125 ≤ 𝐾8 < 0.9

𝐾8
𝜋
2 + 𝐾8

0.9 ≤ 𝐾8 	, 

 
 

𝐾8 = 0.125 +
𝐾 − 0.125

1 + 0.0967𝑅𝑒8.nonf
	, 

 

𝐾 =
𝜌<𝑣𝑑"

9𝜇'𝐷
	, 

 

𝑅𝑒 =
𝑑𝑣𝜌'
𝜇'

	. 

 
Here, K0 is the modified Langmuir inertia parameter, K is the Langmuir inertia parameter, Re is the 
Reynolds number, ρw is the density of water, d is the droplet diameter, ρa is the air density and µa is the air 
viscosity.  In practice, the efficiency is essentially zero for K0 < 0.125.  D is the diameter of the cylinder 
collecting water, which in the case of the icing sensor would be Dw. 
 
The air viscosity is calculated using Sutherland’s Law: 
 

𝜇' = 𝜇8
𝑇8 + 𝑆
𝑇 + 𝑆

𝑇
𝑇8

o
"
	, 

 

(15) 

where T is the air temperature, T0 is a reference temperature, µ0 is the viscosity at T0, and S is 
Sutherland’s temperature for air.  Some convenient values are 
 

𝑇8 = 273.15	𝐾	, 
 

𝜇8 = 1.716×10tu
𝑘𝑔
𝑚𝑠

	, 
 

𝑆 = 110.4	𝐾. 
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Appendices 
 
A Energy Integrals 
 
The assumed displacement equation, as referenced above, repeated here: 
 

𝑦 = 𝐵 cos(𝜔𝑡) cos
𝜋𝑥
2𝐿8

− 1 	 (2) 

 
A.1 Derivatives 
 
The derivatives of the displacement equation, equation 2: 
 

𝑦 = −𝜔𝐵 sin 𝜔𝑡 cos
𝜋𝑥
2𝐿8

− 1 	 (17) 

 

𝑦" = 𝜔"𝐵" sin" 𝜔𝑡 cos"
𝜋𝑥
2𝐿8

− 2 cos
𝜋𝑥
2𝐿8

+ 1 	 (18) 

 
 

𝑦( = −	
𝜋𝐵
2𝐿8

cos 𝜔𝑡 sin
𝜋𝑥
2𝐿8

 
(19) 

 
 

𝑦(( = −	
𝜋"𝐵
4𝐿8"

cos 𝜔𝑡 cos
𝜋𝑥
2𝐿8

 
(20) 

 
 

𝑦((" = −	
𝜋F𝐵"

16𝐿8F
cos" 𝜔𝑡 cos"

𝜋𝑥
2𝐿8

 
(21) 

 
 
A.2 Integrals 
 
A.2.1 Time-Derivative Integrals 
 
Integrate the derivatives of the assumed displacement equation, to be used in deriving the kinetic energy 
equation (7) above: 
 

𝑦"𝑑𝑥 =𝜔"𝐵" sin" 𝜔𝑡 cos"
𝜋𝑥
2𝐿8

− 2 cos
𝜋𝑥
2𝐿8

+ 1 𝑑𝑥  

 
 

= 𝜔"𝐵" sin" 𝜔𝑡
1
2

1 + cos
𝜋𝑥
𝐿8

𝑑𝑥 −
4𝐿8
𝜋
sin

𝜋𝑥
2𝐿8

+ 𝑥  
 

 
 

= 𝜔"𝐵" sin" 𝜔𝑡
3
2
𝑥 +

𝐿8
2𝜋

sin
𝜋𝑥
𝐿8

−
4𝐿8
𝜋
sin

𝜋𝑥
2𝐿8
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3
2
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𝐿8
2𝜋

sin 𝜋 − sin 0 −
4𝐿8
𝜋

sin
𝜋
2

− sin 0  
 

 
 

= 𝜔"𝐵" sin" 𝜔𝑡
3
2
𝐿8 −

4
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Find constant a: 
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3
2
−
4
𝜋
=
3𝜋 − 8
2𝜋
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− sin
𝜋𝐿U
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3
2
−
4
𝜋
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Find constant b: 

𝑏 = 𝑎 −
3𝐿U
2𝐿8

−
1
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sin
𝜋𝐿U
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+
4
𝜋
sin

𝜋𝐿U
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(8b) 

 
A.2.2 X-Derivative Integrals 
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Integrate the derivatives of the assumed displacement equation, to be used in the derivation of the 
potential energy equation (3) above: 
 

𝑦((" 𝑑𝑥 =
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𝜋
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=
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1
𝜋
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=
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32𝐿8F
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(25) 

 
Find constant c: 

𝑐 = 1 −
𝐿U
𝐿8
−
1
𝜋
sin

𝜋𝐿U
𝐿8

 
(8c) 

 
 


